Algebraic determination of back-projection operators for optoacoustic tomography

source: © 2018 Optical Society of America

The simplicity and computational efficiency of back-projection formulae have made them a popular choice in optoacoustic tomography. Nonetheless, exact back-projection formulae exist for only a small set of tomographic problems. This limitation is overcome by algebraic algorithms, but at the cost of higher numerical complexity. In this paper, we present a generic algebraic framework for calculating back-projection operators in optoacoustic tomography. We demonstrate our approach in a two-dimensional optoacoustic-tomography example and show that once the algebraic back-projection operator has been found, it achieves a comparable run time to that of the conventional back-projection algorithm, but with the superior image quality of algebraic methods.[Read More…]

Fig. 1 (a) The grid of the image and detector locations used for calculating the model matrix?. The image is divided into ??×?? square pixels with a pixel area of ???? and the acoustic signals are sampled at ?? positions over a line with a distance of?? between them. (b) The image grid on which the projection operator ? is calculated. Here, only a single back-projection is calculated, and the number of pixels in the x directions is increased to ??=??+??−1.

Amir Rosenthal, “Algebraic determination of back-projection operators for optoacoustic tomography,” Biomed. Opt. Express 9, 5173-5193 (2018)

Ultrasound detection via low-noise pulse interferometry using a free-space Fabry-Pérot

source: © 2018 Optical Society of America

Coherence-restored pulse interferometry (CRPI) is a recently developed method for optical detection of ultrasound that achieves shot-noise-limited sensitivity and high dynamic range. In principle, the wideband source employed in CRPI may enable the interrogation of multiple detectors by using wavelength multiplexing. However, the noise-reduction scheme in CRPI has not been shown to be compatible with wideband operation. In this work, we introduce a new scheme for CRPI that relies on a free-space Fabry-Pérot filter for noise reduction and a pulse stretcher for reducing nonlinear effects. Using our scheme, we demonstrate that shot-noise-limited detection may be achieved for a spectral band of 80 nm and powers of up to 5 mW. [Read More…]

Fig. 1 A schematic of CRPI. EDFA is erbium-doped fiber amplifier; PZ is piezoelectric fiber stretcher; CRF is coherence-restoring filter; and π-FBG is π-phase-shifted fiber Bragg grating. The pulse train from the laser is filtered to a bandwidth of 0.4 nm, amplified, and further filtered by the CRF. Shifts of resonance of the π-FBG are measured by optical demodulator, implemented by a Mach-Zehnder interferometer locked to quadrature.

Oleg Volodarsky, Yoav Hazan, and Amir Rosenthal, “Ultrasound detection via low-noise pulse interferometry using a free-space Fabry-Pérot,” Opt. Express 26, 22405-22418 (2018)

Looking at sound: optoacoustics with all-optical ultrasound detection

source: © 2018 Light: Science & Applications

Originally developed for diagnostic ultrasound imaging, piezoelectric transducers are the most widespread technology employed in optoacoustic (photoacoustic) signal detection. However, the detection requirements of optoacoustic sensing and imaging differ from those of conventional ultrasonography and lead to specifications not sufficiently addressed by piezoelectric detectors. Consequently, interest has shifted to utilizing entirely optical methods for measuring optoacoustic waves. All-optical sound detectors yield a higher signal-to-noise ratio per unit area than piezoelectric detectors and feature wide detection bandwidths that may be more appropriate for optoacoustic applications, enabling several biomedical or industrial applications. Additionally, optical sensing of sound is less sensitive to electromagnetic noise, making it appropriate for a greater spectrum of environments. In this review, we categorize different methods of optical ultrasound detection and discuss key technology trends geared towards the development of all-optical optoacoustic systems. We also review application areas that are enabled by all-optical sound detectors, including interventional imaging, non-contact measurements, magnetoacoustics, and non-destructive testing.[Read More…]

Fig. 1 a Intensity-sensitive detection of refractive index. b Single-beam deflectometry. c Phase-sensitive ultrasound detection with a Schlieren beam. d Phase-sensitive ultrasound detection with a decoupled optoacoustic source. AL acoustic lens, CMOS CMOS camera, FP Fourier plane, L lens, LA laser, P prism, PD photodiode, QPD quadrant photodiode, SB Schlieren beam, SF spatial filter, US ultrasound

Georg Wissmeyer, Miguel A. Pleitez, Amir Rosenthal & Vasilis Ntziachristos ,”Looking at sound: optoacoustics with all-optical ultrasound detection”, in Light: Science & Applications volume 7, Article number: 53 (2018)

Passive-demodulation pulse interferometry for ultrasound detection with a high dynamic range

(a) Schematic drawing of the system used for pulse interferometry. (b) Active-demodulation scheme consists of an unbalanced Mach–Zehnder interferometer (MZI) stabilized to quadrature using a wideband feedback circuit. PZ is piezoelectric fiber stretcher, and FC is 50/50 fused fiber coupler. (c) Passive-demodulation scheme consists of a dual-polarization unbalanced MZI, implementing a 90° optical hybrid. PBS is polarization beam splitter.

source: © 2018 Optical Society of America

In the optical detection of ultrasound, resonators with high Q-factors are often used to maximize sensitivity. However, increasing the Q-factor of a resonator may reduce the linear range of the interrogation scheme, making it more susceptible to strong external perturbations and incapable of measuring strong acoustic signals. In this Letter, a passive-demodulation scheme for pulse interferometry was developed for high dynamic-range measurements. The passive scheme was based on an unbalanced Mach–Zehnder interferometer and a 90° optical hybrid, which was implemented in a dual-polarization all-fiber setup. We demonstrated the passive scheme for detecting ultrasound bursts with pressure levels for which the response of conventional, active interferometric techniques became nonlinear. [Read More…]

Fig. 1. (a) Schematic drawing of the system used for pulse interferometry. (b) Active-demodulation scheme consists of an unbalanced Mach–Zehnder interferometer (MZI) stabilized to quadrature using a wideband feedback circuit. PZ is piezoelectric fiber stretcher, and FC is 50/50 fused fiber coupler. (c) Passive-demodulation scheme consists of a dual-polarization unbalanced MZI, implementing a 90° optical hybrid. PBS is polarization beam splitter.

Yoav Hazan and Amir Rosenthal, “Passive-demodulation pulse interferometry for ultrasound detection with a high dynamic range,” Opt. Lett. 43, 1039-1042 (2018)

Ultrasound Detection Using Acoustic Apertures

source: © 2018 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

Ultrasound detection is commonly performed by piezoelectric transducers that are optimized for a specific application. Since the piezoelectric technology is not configurable, transducers designed for one application may not be compatible with other applications. In addition, some designs of ultrasound transducers may be difficult to implement owing to production constraints. In this paper, we propose a simple, low-cost method to reconfigure the geometry of ultrasound transducers. The technique is based on using apertures in thin sheets of acoustic blockers. We experimentally demonstrate this method for an ultrasound transducer with a central frequency of 1 MHz and show that it can emulate detectors of various sizes. An added advantage of this technique is its capability to achieve semi-isotropic detection sensitivity due to diffraction when the aperture size is comparable to the acoustic wavelength even when the angular sensitivity of the transducer is inherently limited.[Read More…]

Fig. 1 (a) Side view illustration of the detection scheme used in this paper. An ultrasound blocking mask with an aperture is placed in front of a large-area ultrasound receiver, resulting in an emulated detector whose detection characteristics depend on the aperture geometry. (b) Illustration of the experimental setup in which the emulated detector was used to characterize the 2-D diffraction map from an ultrasound transmitter. (c) Illustration of the setup used for characterizing the angular sensitivity of the emulated detector. (b) and (c) Transmitter was scanned in the xy plane while keeping the same z value for the transmitter, the receiver, and the aperture mask centers.

E Hahamovich, A Rosenthal, “Ultrasound Detection Using Acoustic Apertures”,in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control ( Volume: 65 , Issue: 1 , Jan. 2018 )